Communicating life cycle information to the consumer: challenges and opportunities

Dr Ben Lane, Ecolane & Next Green Car LowCVP Conference 2013 – London – 11th July 2013

benlane@ecolane.co.uk

next greencar™ Communicating life cycle information to the consumer: challenges and opportunities

- 1. MAIN CAR BUYER MOTIVATIONS / TRUST
- 2. WHY IS LCA IMPORTANT TO CONSUMERS?
- 3. WHAT LCA INFORMATION IS AVAILABLE ?
- 4. HOW TO COMMUNICATE LCA INFORMATION?

Private car buyer: purchase factors

Motivation

LowCVP Car Buyer Survey 2010

Gap between 'real-world' and typeapproval CO₂/MPG is increasing

Impact beyond the tailpipe is increasing

Next Green Car 2013

Impact beyond the tailpipe is increasing

Ricardo-AEA 2011

Life cycle

- Tailpipe CO2 emissions reducing with electrification
- Indirect ('upstream')
 CO₂ increasing with electrification
- Indirect CO₂ almost 50% for battery electrics
- Increasing disconnect with label information

Vehicle specifications based on roadmap projections for 2015. Assumed lifetime mileage 150,000 km. Fuels E10 and B7. Electricity carbon intensity assumed to be 500 gCO₂/kWh.

What is the demand for life cycle information?

Information

- Consumers: Evidence that consumers aware of indirect emissions may not know how EVs work, but conceptually understand that emissions may be generated 'elsewhere' (at power station);
- Fleets: Under the Companies Act 2006 (Strategic and Directors' Reports) Regulations 2013, quoted companies are required to report their annual GHG emissions in their directors' report – advised to include Scope 2 (indirect) emissions;
- Policy: Increasingly needs to be based on life cycle impacts (e.g. Embodied energy of EVs) – CO2 & AQ reduction priorities converging;
- OEMs: Brand, reputation, competitiveness, marketing Combining promotion of EV <u>with</u> renewable electricity increased U.S. consumer interest 25%→31% among buyers of conventional vehicles

Ecolane 2009, Carbon Trust 2013, Low Emission Strategies, Axsen & Kurani 2013

What life cycle information is available?

Information

- Consumers: No 'official' B2C model specific info other than NEDC
 Type Approval data independent 3rd party online tools / websites no national/international consumer 'brand' (such as Euro NCAP);
- Fleets: Multitude of corporate consultancy provided LCA services extensive LCA datasets (ecoinvent, SimaPro, US GREET, EU JRC) – SMEs: DIY LCA supported by Defra GHG Reporting Guidance – International standards well developed: ISO 14040/44, PAS2050;
- OEMs: Increasing number of OEMs do produce model range LCA reports – but not distributed widely – tend to be B2B focused

European vehicle rating systems

Rating systems

- Ecoscore (Belgium, TA¹+LCA data, 2003?-13)
 Belgian system developed by Vrije Uni. Brussels, VITO & CESSE well supported live database
- Green Car Rating (UK, TA+LCA, 2006-13) greencar rating[™] Developed by Next Green Car, UK based on EU Cleaner Drive – well supported live database
- Cleaner Drive (EU, TA+LCA data, 2001-2004)
 Car life cycle ratings EU project 2001-2004 led by Energy Saving Trust, UK discontinued
- VCD Environmental Car List (Germany, TA data, 2002-13)
 Basic points system based on Type Approval data generated annual Top Ten list Annual
- Ecomobiliste (Switzerland, TA data, 1997-2009-13)
 Dev by Institute Energy and Environment (IFEU), Germany basis for Top Ten list Annual
- CAIR Environmental Rating system (UK, TA data+, 1998-2006?)
 Centre for Automotive Industry Research (CAIR) at University of Cardiff, UK discontinued
- ETA Car Buyer's Guide (UK, TA data, ??-2012) Environmental Transport Association – based on Type Approval data – Occasional updates
- EcoTest (EU, Real world tailpipe, 2003-13)
 EcoTest

 Jointly developed by the FIA foundation and ADAC 150+ cars tested annually real world cycle

CVCLE

European vehicle rating systems

CYCLE

ΞH

Rating systems

- Ecoscore (Belgium, TA¹+LCA data, 2003?-13)
 Belgian system developed by Vrije Uni. Brussels, VITO & CESSE well supported live database
- Green Car Rating (UK, TA+LCA, 2006-13) greencar rating[™] Developed by Next Green Car, UK based on EU Cleaner Drive – well supported live database
- Cleaner Drive (EU, TA+LCA data, 2001-2004)
 Car life cycle ratings EU project 2001-2004 led by Energy Saving Trust, UK discontinued

Four key LCA stages:

- Scope definition
- Inventory analysis
- Impact assessment
- Interpretation

www.lcanz.org.nz/introduction-lca

Ecoscore (Belgium)

Rating systems

ecoscore				
Q Search				
Calculate				
i Info Pages				
🔨 Belgian Fleet				
P Links				
Contact				
Partners				
🗡 vito				
Vrije Universiteit				
watoric				

- <u>ecoscore.be</u>¹ is a free to use consumer website developed by Vrije University Brussels, VITO & Centre of Economical and Social Studies of the Environment (CESSE) Universite Libre de Bruxelles.
- Includes LCA methodology related to fuel cycle and expresses car's life cycle environment impact as a score out of 100: 100 greenest to 0 most polluting
- Methodology includes 3x GHG emissions, 6x AQ regulated pollutants and noise – assesses impacts on climate change, air quality (human health and ecosystem).
- Website is free to use and allows users to search for specific models, provides 'Top 10' lists by vehicle class and a calculator to score any emissions dataset.

Ecoscore methodology

Rating systems

- Includes CO2+noise and all regulated emissions as measured by NEDC
- Other GHG and AQ emissions considered to compare all fuel types
- '5-step' LCA methodology covers fuel life cycle (vehicle manufacture not included)

Ecoscore results

Rating systems

2012-13 models shown using reverse 2-D plot of AQ-GHG ecoscores – Belgium context

1 – ecoscore methodology applied to UK sourced Type Approval data

- <u>Nextgreencar.com</u>¹ is a free to use UK consumer website designed to help car buyers find, compare and buy greener cars Est. 2006
- Includes Green Car Rating which expresses car's life cycle environment impact as a score out of 100:
 0 greenest to 100 most polluting

Ρ U J gre

Next Green Car method

Rating systems

- Includes CO2 and all regulated emissions as measured by NEDC
- Other GHG and AQ emissions considered to compare all fuel types (excl. dB(A))
- External costing method GHG/AQ weighting determined by costs and ref. vehicle

Next Green Car results

Rating systems

2012-13 models shown using 2-D plot of AQ-GHG ratings coordinates – UK context

Providing consumer and fleet LCA information

The challenge

- Include life cycle emissions (beyond tailpipe) enables a fair comparison of all vehicle types – and means that zero-emission vehicles can be fairly compared
- Include all measured air-based emissions (not just CO2) allows a realistic comparison between different vehicle and fuel types (PET vs DSL)
- Incorporate an impact assessment accounts for impacts of different emissions and enables: (a) comparison between emissions (b) emission vectors to be aggregated
- Include vehicle manufacturing cycle (as well as fuel cycle) while manufacturer of ICEs only contributes 10-15% of life cycle CO2, this is set to dramatically increase
- Be simple for non-experts common approach is to use a score out of 100 <u>but</u> also be able to provide all relevant reporting data (fleet)
- Be a trusted source of information common standards available include ISO 14040-14044 standards and PAS2050 accreditation
- Branded: instantly recognisable by mass audience

Providing consumer and
fleet LCA informationThe challenge

None of the global fuel economy labels include LCA data:

UK

Energia (Combustivel)

Categoria do vei Marca 2009

Compacto

Nome/Logo)

Brazil

China

Singapore

India

Rendimiento de Combustible	Marca: Modele: Combustible: Norma de Emisión: Código de Islome Técnico:		
	Emisiones de CO2 xxx g/km		
Ciudad x,x km/l	Mixto x,x km/l		
	Carretera x,x km/l		
Los valores reportados en	esta etiqueta son referenciales.		
El rendimiento de combustible y el proceso de homologación Telecomunicaciones, a través (El rendimiento electrocomente o	emisiones de CO2 corresponde al valor constatado en desarrollado por el Ministerio de Transporte y del Centro de Control y Centificación Vehicular (3CV). bisnido por cada conductor dependent de sus hábilos ca de mantención del vehiculo, de las condiciones		
de conducción, de la frecuen ambientales y geográficas, entr	e otras.		
de conducción, de la frecuen ambientales y geogràficas, entr El CO ₂ es el principal gas efe	e otras. acto invernadero responsable del cambio climático.		

Chile

ICCT 2013

US

South Korea

NZ

Providing consumer and fleet LCA information

The challenge

Designing consumer metrics can be a challenge in itself:

Test label based on current UK label

NISSAN LEAF gearbox Hatchback 80kw 2012 109 PS Automatic (CVT) Pure electric TAILPIPE CO₂ EMISSIONS ELECTRICITY USE B-C D-E kWh/100km 0 combined H-I g/km J-K L-M electric range 80 miles Vehicle Excise Duty (VED) kilowatt hours per 100km Test label for battery electric vehicle Very low level of understanding of 'Wh/km' and 'kWh/100km'

LowCVP Car Buyer Survey 2012

Life cycle information provision and marketing

The opportunity

- Consumers: able to make simple but informed choices (eg ICE vs EV) – retain trust in industry and brand loyalty;
- Fleets: able to report and audit GHG + AQ emissions simply, accurately and to agreed common standards;
- Policy: able to make informed technology choices based on balanced approach to CO₂ & AQ − better company reporting → better national emissions auditing;
- OEMs: Brand strength, maintain reputation, increase competitiveness → new marketing opportunities (e.g. EV sales, data for fleets)

Life cycle information provision and marketing

The opportunity

"If you're in the showroom... rather than ask the dealer, you've got the information to hand – it's great"

Digital delivery

QR CODE

LowCVP Car Buyer Survey 2012

Communicating life cycle information to the consumer: challenges and opportunities

Dr Ben Lane, Ecolane & Next Green Car LowCVP Conference 2013 – London – 11th July 2013

benlane@ecolane.co.uk

next greencar™ Additional slides for reference only (if required for discussion)

Green Car Rating calculation (UK)

• External cost $\mathbf{Q}_{\text{GHG/AQ}}$ (EUR/km) = $\sum_{i} \mathbf{p}_{i} \cdot \mathbf{c}_{i}$

p_i = emission of pollutant i in grams/kmc_i = external cost of emission of pollutant i in EUR/grams

- GHG Rating = 100 × Q_{GHG} (vehicle) / Q_{GHG} (maximum)
- AQ Rating = 100 × Q_{AQ} (vehicle) / Q_{AQ} (maximum)
- Green Car Rating = 100 × Q_{TOTAL} (vehicle) / Q_{TOTAL} (maximum)

Example: Toyota Prius 1.8 VVT-i T3 HEV MY2013 89gCO2/km²

GHG external costs	CO ₂	CH ₄	N ₂ O	TOTAL
Tailpipe emissions (g/km)	89	0.012 (est)	0.005 (est)	-
Tailpipe ext costs (EUR/km)	0.00409	0.00001	0.00007	-
Indirect ext costs (EUR/km)	0.00221	0.00004	0.00000	-
GHG external costs	0.00630	0.00005	0.00007	0.00642
Max GHG ext cost				0.01718

AQ external costs	СО	HC	NO _x	PM	SO ₂	TOTAL
Tailpipe emissions (g/km)	0.258	0.058	0.006	-	-	-
Tailpipe ext costs (EUR/km)	0.00000	0.00000	0.00000	0.00000	0.00000	-
Indirect ext costs (EUR/km)	0.00000	0.00069	0.00031	0.00012	0.00095	-
AQ external costs	0.00000	0.00069	0.00031	0.00012	0.00095	0.00208
Max AQ ext cost						0.01165

GHG Rating = 100 × 0.00642 / 0.01718 = 37.0 (1 dec pl.)

AQ Rating = $100 \times 0.00208 / 0.01165 = 19.0$ (1 dec pl.)

Green Car Rating = 100 × 0.00959 / 0.02883 = <u>30.0</u> (1 dec pl.)

Ecoscore methodology

Rating systems

- Ecoscore = 100*exp[-0.00357*(A*CO2 + B*HC + C*NOx + D*CO + E*PM + F*BV + G*dB(A) + H)]
- Ecoscore GHG = 100*exp[-0.00357*2*(A*CO2 + f1*BV + h1)]
- Ecoscore AQ = 100*exp[-0.00357*2.5*(B*HC + C*NOx + D*CO + E*PM + f2*BV)]

BV = fuel economy in lit/100km, m3/100km or kWh/100km

Coefficients A, B, C, D, E, F, f1, f2, G and the constants H, h1, h2 correspond to fuel type and Euro standard

GHG calculation CO₂ BV constant TOTAL CO2 (g/km) & FC (l/100km) 3.9 89 Coefficients 0.36 1.12 0.71 Exponent 32.04 4.368 0.71 37.118 GHG ecoscore 76.7 AQ calculation CO HC NO_x PM BV TOTAL Emm (g/km) & FC (l/100km) 0.258 0.058 0.006 3.9 Coefficients 5.89 0.011 23.17 101.88 1407.75 Exponent 0.0028 1.3439 0.6113 0.0000 22.971 24.929 AQ ecoscore 80.0 AQ calculation dB(A) CO2 CO HC NO_v PM BV TOTAL constant Emm (g/km) & FC (l/100km) 89 0.258 0.058 0.006 3.9 69.0 -Coefficients 0.36 0.011 23.17 101.88 1407.75 7.01 0.333 -12.63 Exponent 32.04 0.0028 1.3439 0.6113 0.0000 27.339 22.977 -12.63 71.684 AQ ecoscore 77.4

Example: Toyota Prius 1.8 VVT-i T3 HEV MY2013 89gCO2/km²

GHG ecoscore = 76.7 (1 dec pl.)

AQ ecoscore = 80.0 (1 dec pl.)

TOTAL ecoscore = 77.4 (1 dec pl.)

1 – http://www.ecoscore.be/en/ecoscore-information